Technical Appendix 1

Assumptions made on UK hedgerow network and its distribution

Hedgerow lengths

The best available estimate of the total length of managed hedgerows in Great Britain, 477 000 km, is from the Countryside Survey 2007¹. In this study we have modelled a 40% increase in the UK hedgerow network, and so to this total needs to be added an estimate of hedgerow length obtained for Northern Ireland, 113 650 km², giving a UK total of 590 650 km. This figure is for hedgerows in rural environments only, whilst urban and semi-urban hedgerows also deliver important ecosystem services for societal and economic benefit. Taking the assumption that urban hedgerows represent one tenth of the rural hedgerow network³, we have estimated a UK wide (semi)urban total of 59,065 km, giving a total UK length of 649 715 km for both rural and (semi)urban environments (Table 1).

Hedgerows	Length (km)	Source
Rural		
Great Britain	477000	Countryside survey 2007
Northern Ireland	113650	McCann (2012)
Total (UK)	590650	
		10% of total network (Staley et al
Urban	59,065	2020)
Total UK rural/ (semi)urban	649,715	

Table 1: UK hedgerow lengths

Hedgerow distribution

For some ecosystem services delivered by hedgerows in the countryside, it is relevant to know the broad agricultural classes across which they are distributed, in particular their spread between areas of arable and pasture. We have assumed that the great majority of the hedgerow network is in lowland agricultural landscapes, so this is the focus of our modelling. Upland hedgerows do exist but are relatively rare. For example, in the highlands, islands and Southern Uplands of Scotland most of land is unenclosed and enclosed fields tend to be bounded by fences and walls rather than hedges⁴.

The best available data on lowland agricultural areas come from the Land Cover Map 2015 ⁵. We calculated lowland agricultural areas as comprising the LCM classes arable and four grassland types: improved, neutral, calcareous and acid. The UK values for neutral and calcareous grasslands, which predominate in, but are not exclusive to, lowland areas were adjusted to take into account the small areas of upland hay meadows and upland calcareous grasslands respectively, using data from the UK Biodiversity Action Plan (JNCC). The UK BAP was also the source of acid grassland in lowlands, as such grasslands predominate in uplands. Table 2 gives the total derived areas and percentages of arable and pasture in lowland UK.

Table 2: Lowland agricultural classes

		Percentage of lowland
Class	Area (km2)	agricultural area
Arable	56506	42.5
Improved grassland	74466	56.0
Neutral grassland	1137	0.9
Calcareous grassland	578	0.4
Acid grassland	300	0.2
Total grassland (pasture)	76481	57.5
Total lowland agriculture	132987	100

In order to estimate hedgerow distribution across the 42.5% of the lowland agricultural area that is arable and 57.5% that is pasture, respective average field sizes and therefore field boundary density also need to be taken into account. Average field sizes have been reported to differ significantly between arable/horticulture (6.34 ha in 2015) and improved grassland (2.57 ha)⁶. We adopted two approaches to estimating field boundary densities based on these field size averages:

- By applying a power law equation describing the relationship between patch size and edge density data from a study of four contrasting landscapes ⁷;
- Approximating the perimeter of landscape patches as a function of area as sqrt(A^D) where A is area and D is the fractal dimension ⁸. D lies in the region of 1.2-1.3 (1.25 used) for coastlines and other linear natural phenomena ⁹.

The results were averaged to arrive at an estimated 188 770 km of hedgerow in arable farmscapes and 401 880 km in pasture farmscapes. To these totals can be added the 59 065 km of hedgerows in (semi)urban areas, which according to the LCM 2015 cover 17 658 km². The estimated total extent of the UK hedgerow network becomes 649 715 km. Table 3 shows what current estimates equate to in terms of the 40% hedgerow network expansion target.

	Current hedgero	w network	Network after 40% increase						
	Length km	Density km/ ^{km2}	Length km	Density km/ ^{km2}					
Arable	188 770	3.34	264 277	4.68					
Pasture	401 880	5.25	562 633	7.36					
(Semi)urban	59 065	3.34	82 691	4.68					
Total	649 715	4.89	909 601	6.84					

Table 3: Hedgerows distributed across arable, pasture and (semi)urban.

It should be noted here that while we tend to assume a spatially even expansion of hedgerows in the 40% increase scenario, to simplify the analyses presented in the main text, we make many recommendations on where planting should be focused, and in reality planting would vary considerably by region and habitat in attempt to optimise functionality of placements.

References

- 1. Carey, P. D. et al. Countryside Survey: UK Results from 2007. 105 (2008).
- 2. McCann, T. The woody species diversity of hedges in relation to environment, landscape, history, management and structure in Northern Ireland. (University of Ulster, 2012).
- 3. Staley, J. T., Wolton, R. & Norton, L. Definition of Favourable Conservation Status for

Hedgerows. 70 (2020).

- 4. NatureScot. Hedgerows UK BAP Priorty Habitat.
- 5. Rowland, C. S. *et al.* Land Cover Map 2015 (25m raster, GB). (2017).
- 6. Ffoulkes, C. *et al.* Research to review and update indicators of climate-related risks and actions in England. ADAS report to the Committee on Climate Change. 40 (2021).
- 7. Hassett, E. M., Stehman, S. V. & Wickham, J. D. Estimating landscape pattern metrics from a sample of land cover. *Landsc. Ecol.* **27**, 133–149 (2012).
- 8. Mandelbrot, B. B. & Mandelbrot, B. B. *The fractal geometry of nature*. vol. 1 (WH freeman New York, 1982).
- 9. Burrough, P. A. Fractal dimensions of landscapes and other environmental data. *Nature* **294**, 240–242 (1981).

Technical Appendix 2

Cost data used to calculate NPV for pollination and pest control services, the NPV of investment in woodchip biofuel for farmers, and to establish a NPV for the provision of negative emissions to the UK public as a result of increased carbon sequestration.

		£	
Labour to plant and guard		3-4/m	
Fencing incl. labour		5-6/m	
Flail (contract, 3-5 miles/day; every	40-50/hr		
Hedge coppicing			
	(i) By hand (100m/day)	6.50-7.50/m	
	(ii) Contractor (13m/hr)	3.50/m	
Hedge laying (every 8-20 years, 20-	16/m		

Table 1. Unit costs for establishment and maintenance of hedgerows.

Technical Appendix 3

Proportional increase in local organism abundance through hedgerow expansion: derivation

O is the background local occurrence of the organism in the absence of hedgerow, per unit length of empty land

I is the number of times the occurrence of organism is increased by presence of hedgerow compared to its absence (1 = no increase, 2 = a doubling of occurrence, 3 = is a tripling of occurrence etc.)

P is the proposed proportional increase in the length of hedgerow

L is the current length of hedgerow

Current local numbers of organisms, N_1

N₁ = (L*O)*I + (L*P)*O

Future local numbers of organisms with new hedgerow, $N_{\rm 2}$

N₂ = (L*O)*I + ((L*P)*O)*I

Proportional increase in local organism abundance through hedgerow expansion, G

$$G = (N_2-N_1) / N_1$$

= (((L*O)*I + ((L*P)*O)*I) - ((L*O)*I + (L*P)*O)) / ((L*O)*I + (L*P)*O)
= (LOI + LPOI - (LOI + LPO)) / (LOI + LPO)
= (LIOP-LOP) / (LIO+LOP)
= (IP-P)/(I+P)

Technical Appendix 4

Biodiversity data used in the economic analysis of biodiversity and a visual presentation of findings

Biodiversity data

Table 1. Net present value at 2% discount rate related to biodiversity benefits arising from 40% increase of current hedgerow network in the UK during the period 2022-2050. The benefits are assessed on the three selected crops oilseed rape, field beans and apples.

£ ha-1	Oilseed rape	Field beans	Apple
Discounted crop output revenue	2,806	1,726	17,702
Discounted grant revenue	9,020	9,020	9,020
Costs	9,415	9,415	9,415
Net present value without grants	-6,609	-7,690	8,287
Net present value with grants	2,411	1,331	17,307

Figure 1. Discounted net cashflow related to the biodiversity benefits arising from the hedgerow network increase (field beans).

Technical Appendix 5

Table 1. Revenues and costs associated with hedgerows management on a \pm m⁻¹ hedge and a \pm m³ woodchip basis (based on Smith *et al.* 2021)¹.

	£ m ⁻¹ hedge	£ m ³ woodchip
Revenue		
Hedgerow grant	0.16	
Coppicing grant	4	
Woodchip sale to woodfuel cooperative		7.59
Equivalent heating oil replacement cost		34.80
Costs		
Flailing	0.25	
Tree shears and chipping	4.46	17.80

Table 2. GHG emission reduction at 10% and 30% of the UKs hedgerows managed for bioenergy (based on Smith *et al.* 2021)¹.

		Percentage of wood features manage woodchip bioen production	ly linear d for ergy
	Unit	10%	30%
Total UK woody linear features	km	813,719	813,719
Total in 15-year coppice rotation	km	81,372	244,116
Annual length coppiced ¹	km	5,425	16,274
Annual length coppiced ¹	m ³ *10 ³	1,356	4,068
Annual energy generated by hedgerow woodchip ²	MWh	1,162	3,486
Annual emissions from hedgerow woodchip ²	Gg CO₂e	18	53
Annual emissions from heating oil equivalent ² Emissions reduction by replacing heating oil with	Gg CO₂e	321	964
woodchip	Gg CO₂e	304	912
¹ Based on trials at Elm Farm and Wakelyns carried out	t by ORC (Smith	et al. 2021) ¹	

²Conversion value of energy generated by woodchip (kWh:) 857

²Emission factor woodchip combustion (kg CO₂e/kWh): 0.01506

²Emission factor heating oil (kg CO₂e/kWh): 0.27652

Table 3. Sources and data used in carbon sequestration calculations

	Carbon Sequestration/storage level used (t C/ha)	Widths Used	Proportion of the new network (Countryside Survey, 2007 and high ambition scenario recommendations)	Amount of hectares of hedgerows in new network (ha)	Carbon total value (Mt)
Aboveground	32.2 (ref ²)	1.9m (ref²)	35.47%	58555.55	1.8855
(managed)					
Aboveground	45.08 (ref ³)	3.5m (ref ³)	34.53%	110901.04	4.9994
(unmanaged)					

Aboveground	52.68 (ref ⁴)	1.5m (ref ⁴)	30%	41345.37	2.1781
(managed for					
woodchip					
biofuel)					
Belowground	92.7 (ref ⁵)	1.5, 1.9 and	All	210801.96	19.5413
(mean		3.5m		(Sum of the	
average for		(corresponding		above)	
all)		to the above)			

Reference

- 1. Smith Jo, Westaway Sally, Mullender Samantha, Giannitsopoulos Michail, G. A. Making hedgerows pay their way: the economics of harvesting field boundary hedges for bioenergy. *Agrofor. Syst.* 1–13 (2021).
- 2. Axe, M. S., Grange, I. D. & Conway, J. S. Carbon storage in hedge biomass—A case study of actively managed hedges in England. *Agric. Ecosyst. Environ.* **250**, 81–88 (2017).
- 3. Crossland, M. Growing Local Energy: The carbon sequestration potential of hedges managed for woodfuel. (2015).
- 4. Committee on Climate Change. Land use: Reducing emissions and preparing for climate change. Comm.Clim. Chang. 100 (2018).
- 5. Blair, J. The effects of grassland management practices, and the role of hedgerows, on farmlandcarbon sequestration and storage. (Queens University Belfast, 2021).

Technical Appendix 6

Detailed description of economic analysis of hedgerows and UK urban air pollution

Two comprehensive studies^{1,2} have undertaken a detailed analysis of the weight of accumulated particulate matter accumulated by urban roadside hedgerows and trees. The most relevant for our purposes is that of Blanuša *et al.* 2020¹ who studied accumulation of particulate matter within several species of mostly perennial hedgerow plants grown in clean conditions and placed at major and minor roadsides in Reading, UK for 12 days in summer. We use this data to represent UK cities as a whole and this is probably justified as urban PM2.5 varies surprisingly little between UK cities (hovering around the 10µg/m³ mark) and season variation is also surprisingly slight³. Across three species of hedgerow, total particulate matter accumulated beside major roads at an average rate of 0.112mg/cm² leaf tissue/12days and at minor roads, 0.072mg/cm² leaf tissue/12days. Assuming evergreen characteristics and constant accumulations of material throughout the year, this equates to accumulation at major of 3.41mg/cm² leaf tissue/year and at minor roads, 2.19mg/cm² leaf tissue/rear.

We treat hedgerows in our model simply as a continuous cuboid with half the length⁴ of hedgerow displaying an open bottom that does not contribute to surface area. Leaf area is assumed conservatively to be the surface area of the three-sided cuboid x2 (internal and external area) + the half bottom inner and outer area. Hedgerow dimensions are taken from average values of urban hedgerows samples in the Blanuša et al. 2020¹ which correspond to a height of 1.6m and a width of 1.6m. This appears to correspond favorably to a recent citizen science survey of urban and rural hedges (roughly in equal proportion) whose dimensions are reported as: "63.2 % of hedges were taller than 2 m and 43.8 % of hedges were wider than 2 m⁷⁴.

There is around 59,065km of urban hedgerow in the UK (see Technical Appendix 1) and 156,000km (156,122km) of urban road^{5,6}. The split of urban major (A roads) to minor roads (B, C and U roads) is roughly 7.6% major road and the remainder minor⁵ (GB-only figures used to calculate split). This equates to 11,844km of urban major road and 144,278km of minor road. There is no accurate data on the distribution of urban hedgerows (roadside vs elsewhere) but it is generally assumed that they occur mainly in residences and parks⁷. We therefore make "proportion of urban hedgerows that are roadside" a variable in our analysis and assume a low range of 5 to 20% and repeat our analysis within this range.

Worksheet 1 (below) shows calculations and total accumulated tones of PM2.5 sequestered across the UK urban roadside hedgerow network per year according to the above framework. Please note that we assume the PM2.5 is 5% of total PM accumulated by leaves². Assuming 5% of urban hedgerows occur along roadsides, we calculate that hedgerows sequester 38 tonnes of PM2.5 (the most health damaging type of airborne pollution) per year. This equates to a damage reduction value⁸ of £2,771,116. Adding an extra 40% to the urban hedgerows occur along roadsides, we calculate that 20% of urban hedgerows occur along roadsides, we calculate that 20% of urban hedgerows occur along roadsides, we calculate that hedgerows sequester 151 tonnes of PM2.5 per year. This equates to a damage reduction value of £11,084,464. Adding an extra 40% to the urban hedgerow network adds an extra £4,433,785 in damage reduction. It would clearly be beneficial for the UK to obtain improved statistics of the distribution of hedgerows within cities.

References

1. Blanuša, T., Qadir, Z. J., Kaur, A., Hadley, J. & Gush, M. B. Evaluating the effectiveness of

urban hedges as air pollution barriers: Importance of sampling method, species characteristics and site location. *Environ. - MDPI* **7**, 1–21 (2020).

- 2. Hofman, J. *et al.* On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: A ground-based LiDAR approach. *Atmos. Environ.* **99**, 130–139 (2014).
- 3. NCAS. NCAS Press Release: Air pollution falling across UK cities, latest data shows. https://ncas.ac.uk/air-pollution-falling-across-uk-cities-latest-data-shows/ (2020).
- 4. Gosling, L., Sparks, T. H., Araya, Y., Harvey, M. & Ansine, J. Differences between urban and rural hedges in England revealed by a citizen science project. *BMC Ecol.* **16**, 45–55 (2016).
- 5. DfT. Road Lengths in Great Britain 2019 In 2019, the total road length in Great Britain was estimated to be. (2020).
- 6. Infrastructure, D. for. Northern Ireland transport statistics 2015-2016. 2015 (2016).
- 7. Staley, J. T., Wolton, R. & Norton, L. Definition of Favourable Conservation Status for Hedgerows. 70 (2020).
- 8. DEFRA. Air quality appraisal: damage cost guidance. https://www.gov.uk/government/publications/assess-the-impact-of-air-quality/air-qualityappraisal-damage-cost-guidance (2021).

Technical Appendix 6 – worksheet 1

'Calculations and total accumulated tones of PM2.5 sequestered across the UK urban roadside hedgerow network per year'

% of urban																
hedgerow assumed																
next to roadside (5																
to 20%)	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
km hedgerow next	2953.	3543.	4134.	4725.	5315.	5906.	6497.	7087.	7678.	8269.	8859.	9450.	1004	1063	1122	1181
to urban road	25	9	55	2	85	5	15	8	45	1	75	4	1.05	1.7	2.35	3
km hedgerow next	224.4	269.3	314.2	359.1	404.0	448.8	493.7	538.6	583.5	628.4	673.3	718.2	763.1	808.0	852.8	897.7
to major road	47	364	258	152	046	94	834	728	622	516	41	304	198	092	986	88
															1036	
km hedgerow next	2728.	3274.	3820.	4366.	4911.	5457.	6003.	6549.	7094.	7640.	8186.	8732.	9277.	9823.	9.451	1091
to minor road	803	564	3242	0848	8454	606	3666	1272	8878	6484	409	1696	9302	6908	4	5.212
surface area of																
urban hedgerow per																
m (m2)	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
surface area of																
urban hedgerow			3519	4022	4524		5530	6033	6535	7038		8044	8546	9049	9552	1005
across all major	2513	3016	328.9	090.2	851.5	5027	374.0	135.3	896.6	657.9	7541	180.4	941.7	703.0	464.3	5225.
roads (m2)	806.4	568	6	4	2	612.8	8	6	4	2	419.2	8	6	4	2	6
surface area of																
urban hedgerow	3056		4278	4890	5501	6112	6723	7335	7946	8557	9168	9780	1039	1100	1161	1222
across all minor	2593.	3667	7631.	0149.	2668.	5187.	7705.	0224.	2743.	5262.	7780.	0299.	1281	2533	3785	5037
roads (m2)	6	5112	04	76	48	2	92	64	36	08	8	52	8.2	7	5.7	4.4
Total weight (mg)																
accumulated PM																
across urban major	8572		1.200	1.371	1.542	1.714	1.885	2.057	2.228	2.400	2.571	2.743	2.914	3.085	3.257	3.428
road hedgerow	0798	1.03E	09E+	53E+	97E+	42E+	86E+	3E+1	74E+	18E+	62E+	07E+	51E+	95E+	39E+	83E+
network per year	240	+11	11	11	11	11	11	1	11	11	11	11	11	11	11	11

Total weight (mg)																
accumulated PM																
across urban minor	6.693		9.370	1.070	1.204	1.338	1.472	1.606	1.740	1.874	2.007	2.141	2.275	2.409	2.543	2.677
road hedgerow	21E+	8.03E	49E+	91E+	78E+	64E+	51E+	37E+	23E+	1E+1	96E+	83E+	69E+	55E+	42E+	28E+
network per year	11	+11	11	12	12	12	12	12	12	2	12	12	12	12	12	12
Total weight																
(tonnes)																
accumulated PM																
across whole urban	755.0		1057.	1208.	1359.	1510.	1661.	1812.	1963.	2114.	2265.	2416.	2567.	2718.	2869.	3020.
road hedgerow	4159	906.0	0582	0665	0748	0831	0915	0998	1081	1164	1247	1331	1414	1497	1580	1663
network per year	81	499	37	57	77	96	16	35	55	75	94	14	33	53	73	92
Total weight																
(tonnes)																
accumulated PM2.5																
across whole urban	37.75		52.85	60.40	67.95	75.50	83.05	90.60	98.15	105.7	113.2	120.8	128.3	135.9	143.4	151.0
road hedgerow	2079	45.30	2911	3327	3743	4159	4575	4991	5407	0582	5623	0665	5707	0748	5790	0831
network per year	9	25	87	85	83	81	79	77	75	37	97	57	17	77	36	96
Total value of urban																
hedgerow network																
in term of damage																
reduction due to																
PM2.5 reduction per	2,771	3,325	3,879	4,433	4,988	5,542	6,096	6,650	7,204	7,759	8,313	8,867	9,421	9,976	10,53	11,08
year	,116	,339	,562	,785	,009	,232	,455	,678	,901	,125	,348	,571	,794	,017	0,241	4,464
Total weight of																
PM2.5 sequestered																
across whole urban																
hedgerow network	52.85		73.99	84.56	95.13	105.7	116.2	126.8	137.4	147.9	158.5	169.1	179.6	190.2	200.8	211.4
per year due to a	2911	63.42	4076	4658	5241	0582	7640	4698	1757	8815	5873	2931	9990	7048	4106	1164
40%	87	349	61	98	36	37	61	85	09	32	56	8	03	27	51	75
Total value of urban																
hedgerow network	3879		5431	6207	6983	7759	8535	9310	1008	1086	1163	1241	1319	1396	1474	1551
in term of damage	562.2	4655	387.2	299.6	212.1	124.5	037.0	949.4	6861.	2774.	8686.	4599.	0511.	6424.	2336.	8249.
reduction due to	9	475	06	63	21	79	37	95	95	41	87	33	78	24	7	16

PM2.5 reduction per																
year																
Extra damage																
reduction value of																
40% increase in																
urban hedgerow	1,108	1,330	1,551	1,773	1,995	2,216	2,438	2,660	2,881	3,103	3,325	3,547	3,768	3,990	4,212	4,433
network per year	,446	,136	,825	,514	,203	,893	,582	,271	,961	,650	,339	,028	,718	,407	,096	,785